Aqua Case Salmar – Troms Stamfisk

Exercise

Finding the production potential at the site based upon measured flow from the catchment area

41122204 41122204 41122204

Learning goals

- to understand the connection between production capacity and available natural water recourses
- to identify water catchment area and be able to calculate for yearly and monthly draining from the area
- to understand the difference in maximum water requirement in production peaks and maximum draining from the catchment area
- To understand the benefits of establishing dams in the draining area

Question to answer

- 1. How many smolt is it possible to produces at the site without making of any dams in the draining area
- 2. How many smolt can be produced if allowed to dam up one of the lakes in the draining area 2 m

In addition to the case the following information is supplied

- The water draining area (MAP)
- water drainage from specific point in the draining area expressed as mm water.pr. year (MAP)
- Monthly drainage from the catchment area in percentage of total yearly (graph)
- Monthly Water requirement expressed as I/min pr 100000 produced smolt (graph)

The Catchment area is marked with yellow stippled line To calculate the size of the area for instance by using the link: <u>http://www.norgeskart.no/adaptive2/default.aspx?gui=1&lang=2</u> <u>http://gislaugny.nve.no/Geocortex/Essentials/Web/Viewer.aspx?Site=Lavvann&ReloadKey=True</u>

NALIZE SCIENCE

The red numbers in this map shows measured water drainage from each specific point expressed as mm water.pr. year.

http://gislaugny.nve.no/Geocortex/Essentials/Web/Viewer.aspx?Site=L wawann&ReloadKey=True

Monthly drainage from the catchment area in percentage of total yearly

jan.	feb	mar	apr	mai	jun	jul	aug	sep	okt	nov	des
4,7 %	5,0 %	3,8 %	5,4 %	17,4 %	19,9 %	9,5 %	6,0 %	7,3 %	9,1 %	6,6 %	5,4 %

A CONVECTIVE A CON

Water requirement expressed as I/min pr 100000 produced smolt

4/10000⁴⁴

Solution

 First find the size of the catchment area by some of the links

UNIVERSITY OF LIFE SCIEN

Find average draining

- Average draining approximately 1500 mm per year
- Total draining area 11,1 km2
- Total water volume that drains of from the entire draining are during a year
- 1,5 m * 11100000 m2 = 16 650 000 m3/year

410000 4 40

But we need to have it on monthly bases because it vary so much over a year

jan.	feb	mar	apr	mai	jun	jul	aug	sep	okt	nov	des
4,7 %	5,0 %	3,8 %	5,4 %	17,4 %	19,9 %	9,5 %	6,0 %	7,3 %	9,1 %	6,6 %	5,4 %

			Ľ
2	80	• 11F	Ľ
	X	S C F	Ľ
401	Q	2. 2. 2.	Ľ
	12	an	

	percent	m3 per month	m3 per min
jan	4,7	782004,4992	17,80520262
feb	5	831919,68	18,94170492
mar	3,8	632258,9568	14,39569574
apr	5,4	898473,2544	20,45704131
may	17,4	2895080,486	65,91713311
jun	19,9	3311040,326	75,38798557
jul	9,5	1580647,392	35,98923934
aug	6	998303,616	22,7300459
sep	7,3	1214602,733	27,65488918
oct	9,1	1514093,818	34,47390295
nov	6,6	1098133,978	25,00305049
des	5,4	898473,2544	20,45704131

Then control against the water requirement

Water requirement expressed as I/min pr 100000 produced smolt

Month	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
TOTAL WATER REQ. (I/min)	1267	1396	1540	1778	3186	830	1487	6490	3484	2050	1167	1292

The critical month will be august

We have available 22 730 I/min and the fish need 6,49
I/min per 100 000 smolt meaning that we can produce 350 000 smolt

	percent	m3 per month	m3 per min	fish requirement per	1000000 m3/min	posssible fi	sh production
jan	4,7	782004,4992	17,80520262	1,26	7	14,05304	
feb	5	831919,68	18,94170492	1,39	5	13,56856	
mar	3,8	632258,9568	14,39569574	1,5	4	9,347854	
apr	5,4	898473,2544	20,45704131	1,77	3	11,50565	
may	17,4	2895080,486	65,91713311	3,18	5	20,68962	
jun	19,9	3311040,326	75,38798557	0,8	3	90,8289	
jul	9,5	1580647,392	35,98923934	1,48	7	24,20258	
aug	6	998303,616	22,7300459	6,4	9	3,502318	
sep	7,3	1214602,733	27,65488918	3,48	4	7,937683	
oct	9,1	1514093,818	34,47390295	2,0	5	16,81654	
nov	6,6	1098133,978	25,00305049	1,16	7	21,42506	
des	5,4	898473,2544	20,45704131	1,29	2	15,83362	

Now we establish a dam

UNIT OF LIFE SCIENCE

Volume of the water in the dam

- Says that the area of water when it is dammed 2 meter is 10 % larger than
- The average are is therefore 5% larger
- Average dam area is 385 386 + 5% = 404 655 m2
- The volume of the dam is 404 655 *2 =809 310,6 m3
- Meaning that only form the dam it is possible to supply the 100 000 smolt for a period of
- 809 310,6 m3 /3,484 m3/min = 232293 min = 161 days
- 1 million smolt can be supplied for 16 days only by water from the dam, in addition will however then natural drainage occur

it will be an optimization to find maximum production

August the critical month

- Supposing that the dam is filled up in the start of august, and we can drain all the 2 meter in this month we can calculate how much fish it then is possible to keep.
- As seen from below the production at the farm can be doubled

				hà được hà được chiến thế
total drain	g per month	total form the dam	water requiremnet for 100 000 fish per month	possible production
999000	m3/month	809310 m3/month	285040,8 m3	6,344039

www.umb.no

...