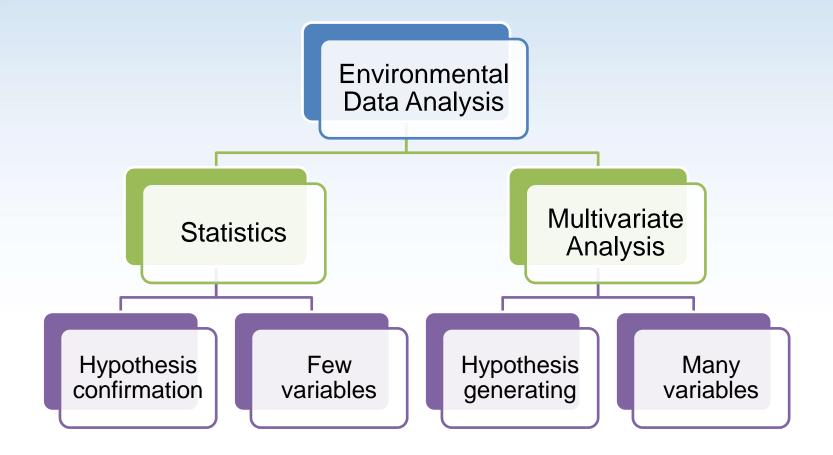


Vocational Aqualabs -Vocational Generic Skills for Researchers

Experimental Design Introduction to multivariate analysis

Trevor Telfer/James Bron Senior Lecturer University of Stirling



Multivariate analysis

- Community level data is important for interpretation of ecological effects from properly constructed field studies (see unit 4), though can be used for a variety of lab-derived multivariate datasets
- Community level data is multivariate (many variables) as each sample site is described by the abundances of a number of species or environmental factors
- What is Multivariate Analysis?
- Why use it for analysing environmental data?
- What are the main techniques of MVA?

Multivariate analysis

Multivariate analysis

There are three main advantages of using MVA

- user appreciates the problem and foresees data type, sampling design and analysis method
- 2. there is a consistency of implementation
- 3. detects smaller differences and more subtle changes in community structure

Multivariate analysis – main types

- Classification
- Ordination

Data input

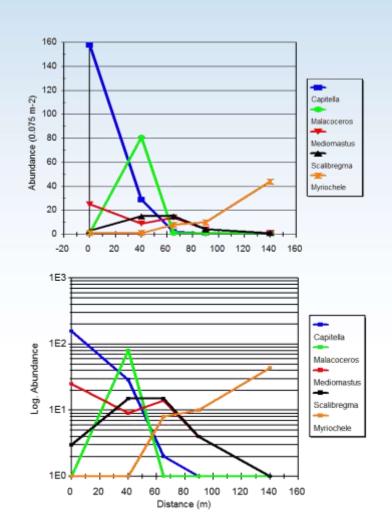
Multivariate analysis – data input

Data matrix (two way table):

	Stations	
Species		

Multivariate analysis - transformations

- for MVA is primarily used to weight the data in order to even out the contribution made by all variables, e.g. species, environmental factors
- Commonly used transforms:
 - square root (sq rt)
 - log transform (lg)
 - fourth root (4rt)
 - binary or presence/absence
- Strength: sq rt < lg < 4rt < +/-


Multivariate analysis - transformations

log transformation

- downweights abundant species
- increases importance of rare species

• log(x + 1)

- 1000 ind > 3.0004
- 100 ind > 2.0043
- 10 ind > 1.0413
- 1 ind > 0.3010

Multivariate analysis – main types

- Classification
- Ordination

Multivariate analysis - classification

 Groups similar entities together in clusters or groups

Two basic kinds:

- Non-hierarchical classification, e.g. twoway table
- Hierarchical classification, e.g. cluster analysis

Multivariate analysis - classification

- simple ordering or species and stations so their occurrences give a patterned structure along the gradient
- good for large data sets
- done "by eye" or by computer

Table 1.3. German meadow samples arranged by the Braun-Blanquel method BBBBBBBBBGGGGGCOCCCCCCCC 1 2 1112 22111 1 221 4019534268205239376181547 **Species** Bromus erectus 9788886 Scabiosa columbaria 2111 Thymus serpvilum 132 1 Salvia pratensis 5 3244 Koelria pyramidata 3444 Festuca ovina 3 3 2 Campanula glomerata 2 12 21 1 2 Viola hirta 4 3111 Briza media 2 2 3 23 Linum catharticum IIb Geum tivale Holeus langues Melandrium diurnum Alopecurus pratensis Lysimachia nummularia 111211 Lychnis flos-cuculi Glechama hederacea Ha Cirsium alcraceum 11121136473477 Deschampsia cuespitosa Angelica sylvestrus Carex acutiformis Filipendula ulmaria Pimpinella magna Polygonum bistorta 3515637267674777664667864 Arrhenatherum elutius Poa pratensis 5546667966754662352542655 Crepis biennis 152324512 441221224121 33

Multivariate analysis - classification

- groups similar entities together into classes in a hierarchical manner
- single analysis may be viewed on several levels, e.g. general / detailed
- relationships are expressed among the entities classified
- poor for large datasets, good for smaller datasets
- two types:
 - Monothetic divisive (all samples in a single cluster then progressively divide into smaller ones)
 - Polythetic agglomerative (each sample in a single cluster then agglomerate these into larger and larger clusters)

Multivariate analysis – assoc. matrix

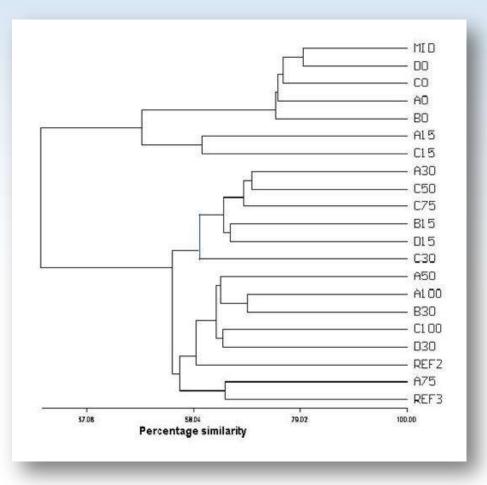
- comparison of sample pairs or species pairs
- many different techniques, e.g. percentage similarity

PERCENT S	SIMILARITY					
	MID	AO	A15	A30	A50	A75
MID	100	75.794	52.241	17.121	2.006	4.839
AO	75.794	100	60.171	20.701	0	O
A15	52.241	60.171	100	43.164	17.844	24.758
A30	17.121	20.701	43.164	100.000	54.561	57.640
A50	2.006	0	17.844	54.561	100	49.979
A75	4.839	0	24.758	57.640	49.979	100
A100	1.956	0	20.994	49.447	65.520	56.377
во	73.289	73.947	49.904	20.060	0	4.901
B15	16.673	14.291	36.491	68.575	53.796	56.250
B30	2.139	0	21.585	53.373	61.295	55.675
CO	75.601	74.378	46.425	17.878	1.993	C
C15	40.886	48.576	59.823	45.219	21.957	27.091
C30	27.396	32.810	53.496	64.443	37.842	45.030
C50	16.729	15.864	35.951	69.550	56.097	59.998
C75	11.721	11.107	28.022	67.388	58.387	48.990
C100	1.545	0	17.747	56.802	63.073	52.641
DO	79.475	73.622	47.078	21.461	1.979	7.139
D15	17.582	14.976	37.532	62.970	7.407	59.444
D30	2.052	2.024	26.919	62.486	62.275	61.908
REF2	4.729	2.328	27.201	52.518	56.907	51.905
REF3	4.417	0	23.599	53.562	54.597	64.218

Multivariate analysis – sorting methods

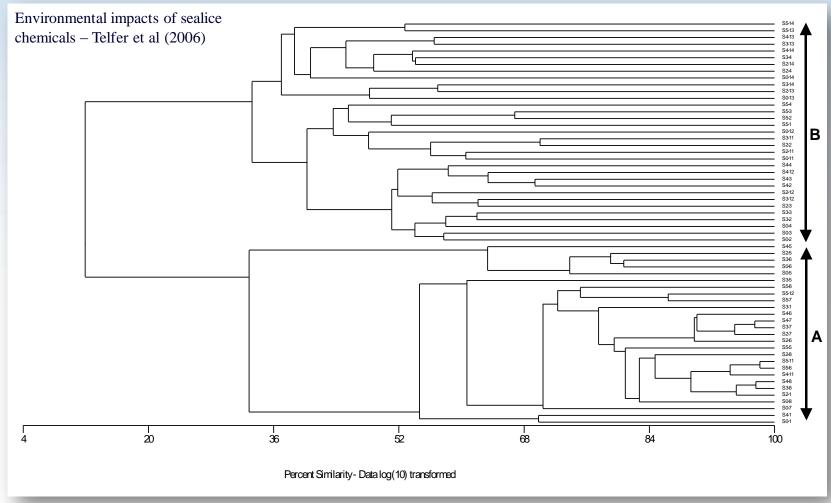
- Agglomeration procedures
- e.g.

Nearest neighbour


(lowest similarity measure)

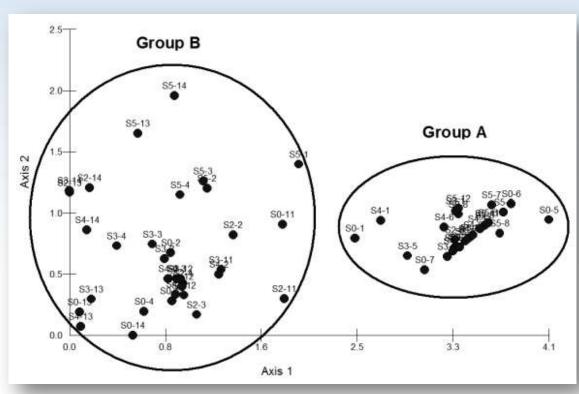
Furthest neighbour

(highest similarity measure)


UPGMA

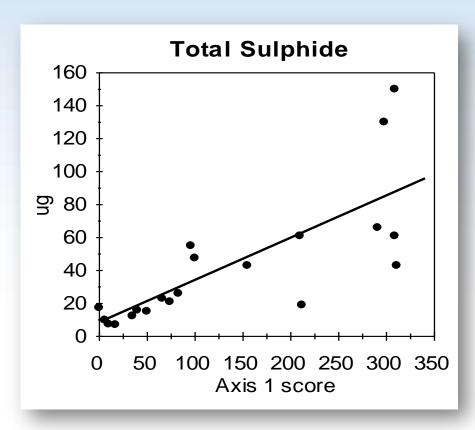
(average similarity measure)

Multivariate analysis – dendrogram



Multivariate analysis – main types

- Classification
- Ordination



- represents samples and species relationships in a low dimensional space
- plot where similar samples/species situated near to each other
- arrangement of samples or species related to environmental factors
 - graphically
 - statistically

Environmental impacts of sealice chemicals – Telfer et al (2006)

Regression analysis

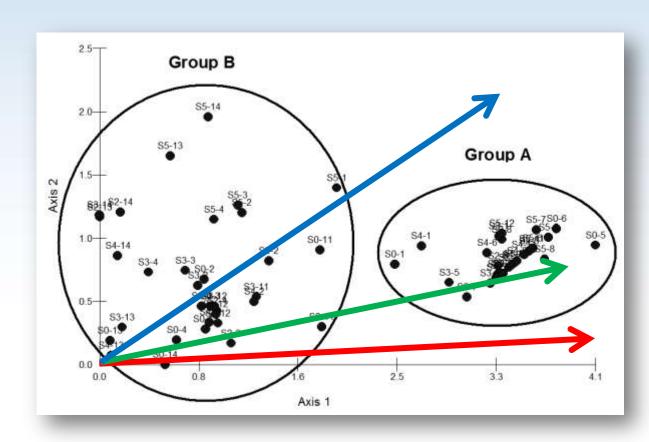
Graph - Regression analysis

Spearman Rank Correlation

Variable	Axis 1	Axis 2	n
Carbon	0.513*	0.428	20
Total S	0.847**	0.288	20
Free S	0.764**	0.185	19

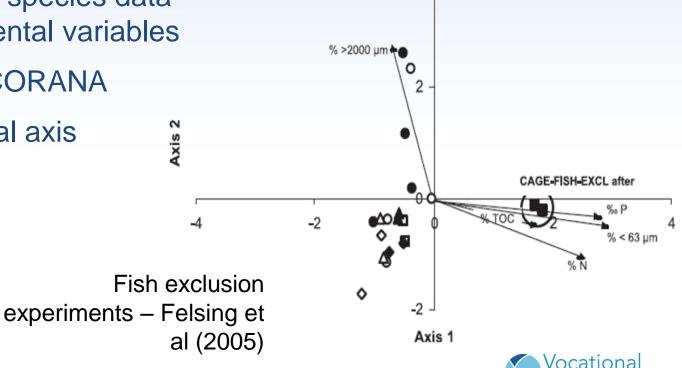
$$r_{s} = 1 - \frac{6\sum d^{2}}{n(n^{2} - 1)}$$

represents the number of stations used for the correlation as the chemical parameters were not done at all stations


n

 The real relationship between the environmental factors and the positions of the sampling stations would be:

Free Sulphide


Total Sulphide

Total Carbon

- Canonical Correspondence Analysis
- ordinates both species data and environmental variables
- based on DECORANA
- gives the actual axis directions

Introduction to multivariate analysis

Multivariate analysis – useful refs

Greig-Smith, P. (1982) *Quantitative plant ecology. Third edition.* Studies in Ecology Volume 9. Blackwell Scientific Publications, Oxford.

Gauch, H.G. (1982) *Multivariate analysis in community ecology.* Cambridge Studies in Ecology. Cambridge University Press. Cambridge.

Kent, M & Coker, P (1994) Vegetation description and analysis. A practical approach. John Wiley & Sons, Chichester. 363pp.

Thank you

Trevor Telfer/James Bron
Institute of Aquaculture
University of Stirling

This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained herein.